Abstract
Abstract
Quantum phase transition and entanglement in the Rabi model with a squeezed light are investigated. We find a special unitary-transformation method that removes the nonintegrable squeezing and counterrotating-wave interactions when the qubit frequency is close to the field frequency. The analytical ground state agrees well with the numerical solution. We demonstrate that the ground state exhibits a first-order quantum phase transition at a critical point induced linearly by the squeezed light. This quantum phase transition requires neither multiple qubits nor an infinite ratio of qubit frequency to field frequency, which solves a critical problem for the theory and experiment in Rabi model. As the qubit-field coupling strength increases, the ground-state entanglement reaches its maximum value at the critical point.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献