A multiscale FEM-MD coupling method for investigation into atomistic-scale deformation mechanisms of nanocrystalline metals under continuum-scale deformation

Author:

Yamazaki Yusuke,Murashima TakahiroORCID,Kouznetsova Varvara,Muramatsu MayuORCID

Abstract

Abstract This study aims to develop a multiscale bridging method for investigating nanocrystalline metals based on macro-scale deformation. For this purpose, we propose a hierarchical multiscale computational method that can focus on some of the elements in a finite element model for scale bridging to atomistic-scale models. This method assumes that atomistic-scale nanocrystalline models are related to the integration points in a finite element and deform based on the macro-scale deformation. Nanocrystalline aluminum was chosen for the validation of the multiscale method. The finite element method (FEM) and the molecular dynamics (MD) method were used for continuum-scale and atomistic-scale simulations, respectively. We utilized the notion of the CauchyBorn rule (CBR) for communicating deformation information from the continuum scale to the atomistic scale. We studied three different cases with two nanocrystalline models and two loading cases to compare differences resulting from crystal structures and loading. Based on the crystal structure change during relaxation, nonequilibrium grain boundaries (NEGBs) were shown to play a role as deformation mechanisms in the plastic regime and induce the onset and migration of crystal defects, including deformation twins, as reported in the experiment. Furthermore, the crystal orientation dependence of the onset of crystal defects was confirmed by the comparison of the results from the two different nanocrystalline models. The qualitative agreement of the results with experimental observations is also confirmed. The proposed ‘FEM-MD’ method can bridge a large-scale gap, for example, from a nano-scale to a continuum-scale such that an MD model can be coupled to a millimeter or centimeter scale compared to other embedding methods. The present method is ideal for investigating the dislocation behavior of nanocrystalline materials, which contain multi-grained nanostructure at finite temperature, undergoing various loading scenarios at the macro-scale.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3