Abstract
Abstract
Nonlinear aeroelastic system has the characteristics of complex structure, difficult modeling and difficult calculation of dynamic response. For the analysis of nonlinear aeroelastic systems, model identification is a very attractive method. However, the models identified by traditional methods are often relatively complex and limited in scope of use, so it is necessary to develop an interpretable equivalent reduced model. In this paper, sparse regression method and sequential threshold least squares technique are used to establish sparse identification method for complex aeroelastic systems. This method has the ability to identify reduced models containing only required nonlinear terms through measurement data. Then, the sparse identification method is used to identify the binary wing with dead zone nonlinearity and cubic stiffness nonlinearity. The obtained model can provide rapid and accurate prediction of the response of the system according to the sensor measurement, and can also be used as an explicit surrogate model for aeroelastic optimization design, thus verifying the superiority of the proposed method.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献