Cubic B-spline based numerical schemes for delayed time-fractional advection-diffusion equations involving mild singularities

Author:

Ghosh Bappa,Mohapatra JugalORCID

Abstract

Abstract This article presents two efficient layer-adaptive numerical schemes for a class of time-fractional advection-diffusion equations with a large time delay. The fractional derivative of order α with α ∈ (0, 1) is taken in the Caputo sense. The solution to this type of problem generally has a layer due to the mild singularity near the time t = 0. Consequently, the polynomial interpolation discretizing scheme degrades the convergence rate in the case of uniform meshes. In the presence of a singularity, the temporal fractional operator is discretized by employing the L1 technique on a layer-resolving mesh. In contrast, the cubic B-spline collocation method is used in the spatial direction. The convergence analysis and estimation of error are presented for the proposed scheme under reasonable regularity assumptions on the coefficients. The scheme achieves its optimal convergence rate (2 − α) for suitable choice of grading parameter (γ ≥ (2 − α)/α). Furthermore, we modified the proposed scheme by discretizing the fractional operator with the help of the L1-2 technique. The modified scheme gets a quadratic order convergence for γ ≥ 2/α. In addition, we extend the proposed schemes to solve the corresponding semilinear problem. Numerical examples demonstrate the efficiency and applicability of the proposed techniques.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3