The SparSpec algorithm and the application to the detection of spatial periodicities in tokamaks: from a 1D to a 2D analysis

Author:

Testa DORCID,Charrière J

Abstract

Abstract A well-known, previously only 1D, algorithm using the Sparse Representation of Signals and an iterative Block Coordinate Descent method (the SparSpec-1D algorithm) has been further developed and tested in a 2D spatial domain to obtain the toroidal and poloidal periodicities of magnetic fluctuations in a tokamak. The tests are performed essentially using simulated data, because we know what the answer must be, and therefore it is straightforward to verify the accuracy of the algorithm. Two more examples using actual data from the JET and TCV tokamaks are considered to test the algorithm in real-life experiments; a further example using simulated data constructed from nominal test cases for the forthcoming ITER tokamak is also considered. The CPU run-time and the precision of the SparSpec-2D algorithm are studied as function of different analysis parameters. The stability of the algorithm is also tested via the introduction of random errors in the input signal. We find that the spatial-2D version of the baseline SparSpec-1D algorithm accurately finds the modes in the 2D toroidal and poloidal space, provided the set of magnetic sensors used for the analysis do not have a (quasi-)ignorable coordinate. The number of probes and their position are the key parameters that must be optimized for finding correct solutions. The main difficulty, as for the baseline SparSpec-1D algorithm, lies in dealing correctly with the intrinsic measurement uncertainties associated to the input magnetic fluctuation data, particularly the phase error, and this has been already separately reported in a companion work. However, the required CPU run-time for SparSpec-2D is significantly longer than that needed for 2 × SparSpec-1D, and thus SparSpec-2D is effectively suitable for use only when the 2 × 1D analyses cannot provide accurate results, which is the case when the set of measurements does not have an ignorable coordinate.

Funder

Swiss National Science Foundation

European Commission

EPFL

SPC

Euratom

EUROfusion Consortium

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3