Two-phase binding of drug in a three-layered arterial wall following stent implantation

Author:

Mandal Akash PradipORCID,Mandal Prashanta KumarORCID

Abstract

Abstract The present study explores the distribution and the binding of drug eluted from an embedded drug-eluting stent (DES), having struts of the circular cross-section. The arterial tissue is composed of three distinct layers, namely, the intima, the media and the adventitia, with varying diffusivity, and at the interfaces between different layers, a jump condition is imposed. The transport of free drug is modelled by the convection–diffusion-reaction process while the binding of drug is modelled by a nonlinear saturable reversible chemical reaction only. This model incorporates two types of binding mechanisms, namely, the specific binding caused by the interaction of drug and receptors, and the non-specific binding due to the gripping of drug in the extracellular medium (ECM). Furthermore, a constant as well as time-dependent release kinetics have been considered. All the governing equations along with suitable initial, boundary and jump interface conditions in cylindrical polar coordinate system are solved successfully by using the finite difference method. In this study, several clinical key factors like the degree of strut embedment, inter-strut distance (ISD), release mechanism are examined thoroughly. The study reveals that the inclusion of different layers along with jump interface conditions has a remarkable impact on stent-based delivery. Simulated results predict that a higher concentration profile for free drug and rapid saturation of binding sites take place for a half-embedded stent as compared to a quarterly and well-apposed stent. An intriguing feature is to be noted that the inter-strut distance through which the transmural plasma filtration takes place, plays a pivotal role in the distribution and retention of drug in the therapeutic domain considered. Furthermore, the steady-state simulation predicts the influence of strut dimension on the distributions of all drug forms.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3