Quantum statistical fluctuation of energy and its novel pseudo-gauge dependence

Author:

Das ArpanORCID

Abstract

AbstractWe discuss the quantum statistical fluctuations of energy in subsystems of hot relativistic gas for both spin-zero and spin-half particles. We explicitly show the system size dependence of the quantum statistical fluctuation of energy. Our results show that with decreasing system size quantum statistical fluctuations increase substantially. As the consistency of the framework, we also argue that the quantum statistical fluctuations give rise to the known result for statistical fluctuation of energy in the canonical ensemble if we consider the size of the subsystem to be sufficiently large. For a spin-half particle, quantum fluctuations show some interesting novel features. We show that within a small sub-system quantum statistical fluctuation of energy for spin-half particles depends on the variouspseudo-gaugechoices of the energy-momentum tensor. Interestingly, for sufficiently large subsystems quantum fluctuations obtained for different pseudo-gauge choices converge and we recover the canonical-ensemble formula known for statistical fluctuations of energy. Our calculation is very general and can be applied to any branch of physics whenever one deals with a thermal system. As a practical application, we argue that our results can be used to determine a coarse-graining scale to introduce the concept of classical energy density or fluid element relevant for the strongly interacting matter, in particular for small systems produced in heavy-ion collisions.

Funder

Narodowe Centrum Nauki

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3