Information loss and run time from practical application of quantum data compression

Author:

Patel SaahilORCID,Collis Benjamin,Duong William,Koch DanielORCID,Cutugno Massimiliano,Wessing Laura,Alsing Paul

Abstract

Abstract We examine information loss, resource costs, and run time from practical application of quantum data compression. Compressing quantum data to fewer qubits enables efficient use of resources, as well as applications for quantum communication and denoising. In this context, we provide a description of the quantum and classical components of the hybrid quantum autoencoder algorithm, implemented using IBMs Qiskit language. Utilizing our own data sets, we encode bitmap images as quantum superposition states, which correspond to linearly independent vectors with density matrices of discrete values. We successfully compress this data with near-lossless compression using simulation, and then run our algorithm on an IBMQ quantum chip. We describe conditions and run times for training and compressing our data on quantum devices, and relate trainability to specific characteristics and performance metrics of our parametric quantum circuits.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference41 articles.

1. Relational autoencoder for feature extraction;Meng,2017

2. Extracting and composing robust features with denoising autoencoders;Vincent,2008

3. Modeles connexionistes de l’apprentissage;LeCun,1987

4. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion;Vincent;J. Mach. Learn. Res.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Selective Qubit Utilization for Optimizing Quantum Data Compression based on Quantum State Error;2024 International Conference on Quantum Communications, Networking, and Computing (QCNC);2024-07-01

2. Jarzynski-like equality of nonequilibrium information production based on quantum cross-entropy;Physical Review Research;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3