Jovian Magnetosheath Turbulence Driven by Whistler

Author:

Dwivedi N KORCID,Singh S,Khodachenko M L,Sasunov Yu L,Kovács P,Kislyakova K G,Kis A

Abstract

Abstract Jupiter’s magnetosheath is a natural yet complex laboratory for analyzing compressible plasma turbulence. Recent observations by the Juno mission provide a promising opportunity for the first time to reckon the energy cascade rate in the magnetohydrodynamic scales in the vicinity of Jupiter’s space. In the present work, a two-dimensional model is constructed for a whistler wave that is nonlinearly coupled with a wave magnetic field via ion density perturbation. The dynamics of whistler wave propagating in the direction of the magnetic field are derived within the limit of the two-fluid modeling approach. The magnetic field localization along with magnetic field spectra and spectral slope variations are estimated to realize the turbulence generation and energy cascade from large to small scales in the Jovian magnetosheath region. The simulated magnetic field spectrum in the wave number (in the unit of ion inertial length ρ i ) consists of turbulence in the inertial range with a spectral slope of −1.4 and a spectral knee at k ρ i = 1. Subsequently, the spectral slope increases to −2.6 and the spectrum becomes steeper. The simulated magnetic field spectrum in the wave number is further translated into the frequency domain using the whistler wave dispersion relation and by considering the Taylor frozen-in condition. The analytically estimated magnetic field spectrum slopes, i.e., −1.8 and −4.2 at low and high frequencies are further compared with recent Juno mission observations. The comparison further affirms the existence of Kolmogorov scaling, a spectral knee, and steepening in the spectrum at high frequencies. Furthermore, it is found that the two-fluid model can reasonably simulate the turbulence effects in Jovian magnetosheath in terms of magnetic field spectral distribution in wave number and frequency domains.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3