Innovative lightweight deep learning architecture for enhanced rice pest identification

Author:

Song Haiying,Yan YiyingORCID,Deng Shijun,Jian Cen,Xiong Jianbin

Abstract

Abstract Pest detection is a crucial aspect of rice production. Accurate and timely identification of rice pests can assist farmers in taking prompt measures for control. To enhance the precision and real-time performance of rice pest detection, this paper introduces a novel YOLOv8-SCS architecture that integrates Space-to-Depth Convolution (SPD-Conv), Context Guided block (CG block), and Slide Loss. Initially, the original algorithm’s convolutional module is improved by introducing the SPD-Conv module, which reorganises the input channel dimensions into spatial dimensions, enabling the model to capture fine-grained pest features more efficiently while maintaining a lightweight model architecture. Subsequently, the CG block module is integrated into the CSPDarknet53 to 2-Stage FPN (C2f) structure, maintaining the models lightweight nature while enhancing its feature extraction capabilities. Finally, the Binary Cross-Entropy (BCE) is refined by incorporating the Slide Loss function, which encourages the model to focus more on challenging samples during training, thereby improving the model’s generalization across various samples. To validate the effectiveness of the improved algorithm, a series of experiments were conducted on a rice pest dataset. The results demonstrate that the proposed model outperforms the original YOLOv8 in rice pest detection, achieving an mAP of 87.9%, which is a 5.7% improvement over the original YOLOv8. The model also features a 44.1% reduction in parameter count and a decrease of 11.7 GFLOPs in computational requirements, meeting the demands for real-time detection.

Funder

Natural Science Foundation of Guangdong Province

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3