High-accuracy data readout in multi-dimensional optical data storage using convolutional neural networks

Author:

Zhu Y PORCID,Xie X Y,Gao J C,Yan Z,Cao Q,Zhang J YORCID

Abstract

Abstract The escalating global volume of digital data poses a critical challenge for storage solutions. Optical data storage techniques have garnered lots of interests due to their excellent offline storage capabilities, including low energy consumption, high capacity, and long lifespan. However, despite the focus on data recording, minimal attention has been dedicated to the readout aspect. This study introduced femtosecond laser direct writing to perform multi-dimensional optical data storage and employed a specialized convolutional neural network to enhance voxel readout accuracy. The proposed network architecture achieved a remarkable voxel readout accuracy of 98.83%, surpassing support vector machine method (90.07%) and LeNet (96.85%). Furthermore, the proposed method yielded a substantial increase in actual user capacity, outperforming traditional approaches and presenting a novel solution for addressing readout challenges in multi-dimensional optical data storage.

Funder

Innovation Fund of the Wuhan National Laboratory for Optoelectronics, Program for HUST Academic Frontier Youth Team and Innovation Project of Optics Valley Laboratory

National Key Research and Development Program of China

Creative Research Group Project of NSFC

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3