Magnetic field control and swift heavy ion beam assisted tuning of resistive switching properties of BSFO/CFO/LNO heterostructures

Author:

Thankachen NishaORCID,Chhaya U V,Tripathi A,Joshi U S

Abstract

Abstract Resistive switching (RS) behavior in mixed oxide insulators has shown a great promise as memristors or non-volatile resistive random-access memory (RRAM) applications. For dilute magnetic oxide multilayers, a novel approach of controlled defects induced and the magnetic field control of RS behavior is proposed. Resistive switching in Bi0.6Sr0.4FeO3 /CoFe2O4 /LaNiO3 (BSFO/CFO/LNO) multilayer heterostructures has been investigated as a case study. All oxide junctions consisting of conducting LaNiO3 (LNO) bottom electrode and BSFO-CFO active layers were fabricated by using chemical solution deposition. A set of samples were irradiated with 150 MeV Ag11+ ions for three different ion fluence of ∼1 × 10+11 ions cm−2, 1 × 10+12 ions cm−2 and 5 × 10+12 ions cm−2. Polycrystalline phase pure films with smooth, crack free surfaces were observed for pristine and irradiated samples. Optical spectroscopy revealed a decrease in the transmittance upon increasing ion fluence due to increase in the light scattering centres. The optical band gap showed a systematic decrease from 2.09 eV to 1.65 eV with increasing ion fluence. Room temperature I-V characteristics showed consistent and pronounced bipolar switching for all samples below ± 5 V. Upon applied magnetic fields of 0.58 T, the resistive switching ratios were found to increase significantly and were further tuned by 150 MeV Ag11+ ion beam irradiations. The magnetic field control of electrical transport properties in the controlled defect assisted oxide heterojunctions offers new insights to the existing understanding of oxide-based RS mechanism.

Funder

SERB

IUAC

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3