Abstract
Abstract
As the hypervapotron (HV) heat sink is used to cool many areas inside the fusion tokamak, it is essential to understand its heat transfer performance to calculate the thermal efficiency of the power generation system. Therefore, in this study, the single-phase (SP) heat transfer performance of HV heat sink was evaluated through sub-cooled flow boiling experiments under one-side high-heat load conditions. When vapor is generated inside the heat sink, flow instability and a potential risk of reaching the critical heat flux are created. Therefore, in commercial power plants, cooling systems tend to operate in the SP regime. System parameters that can be adjusted in the power generation system include the system pressure, mass flow rate, and subcooling, and the effect of these three parameters on the heat transfer performance in the SP regime was analyzed. It was experimentally observed that the mass flow rate was the most influential variable. The prediction performance of the SP forced convection heat transfer correlations of the existing conventiaonl channel were evaluated. The results revealed that they tended to under-predict the heat transfer performance of the HV heat sink. In addition, the same trends were found when the forced convection heat transfer correlation of the curved channel was evaluated. The reasons for the former and the latter are that the heat transfer enhancement effect by the vortex flow occurring between the fins of the HV heat sink is not reflected in the correlations, and the vortex effect of the HV heat sink is not expressed as a variable. Therefore, a new vortex forced convection heat transfer correlation was developed through the newly defined Dean number of the HV heat sink. The developed correlation recorded an average error rate of 0.48%.
Funder
Korea Research Foundation’s Education Human Resource Development Program
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献