Abstract
Abstract
Vanadium-doped Zinc Silicate (Zn2SiO4) phosphors were synthesized through the sol-gel method. Structural, morphological and optical techniques were used to investigate the effects of vanadium incorporation on their structure, morphology, and optical behaviour. We reported that vanadium incorporation in Zn2SiO4 phosphors significantly modifies their crystallinity, morphology, and photoluminescence properties. When vanadium is added to Zn2SiO4 phosphors, the energy band gap (Eg) changes from 5.29 to 2.34 eV. Vanadium dopants generate imperfections in Zn2SiO4 phosphors, the leading cause of their emissions in visible regions and quantum yield. Quantum yield is estimated at 7.06% for Zn2−xVxSiO4 (x = 0.08) phosphor. The luminescence decay lifetime of the prominent emissions of vanadium-doped Zn2SiO4 was measured using a double exponential fitting technique, and the average lifetime is 11.7 ns.
Funder
King Khalid University, Saudi Arabia
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献