Simulation of non-resonant high-order harmonics energetic particle modes in tokamak plasmas

Author:

Liu Sheng,Ren Zhenzhen,Yang Jinhong,Ning HongweiORCID,Xiao Zheng,Wang Weihua

Abstract

Abstract Based on the parameters of the HL-2A experiment, the effect of energetic particles (EPs) on non-resonant high-order harmonics energetic particle modes (EPMs) with q min>1 is investigated in the present work. Hybrid kinetic-magnetohydrodynamic nonlinear code M3D-K is performed to simulate the linear properties and the nonlinear evolution of the non-resonant EPM during neutral beam injection (NBI). To deeply understand the physical mechanism of interaction resonant between energetic-ions and non-resonant EPM, this work compares the effects of passing energetic particles and trapped energetic particles on the non-resonant EPM instabilities. It is numerically identified that EPs’ effects on high n harmonics (m/n = 2/2, 3/3, 4/4) instability are more obvious than the m/n = 1/1 mode. Furthermore, the effects of energetic particles injection energy, the minimum safety factor q min , toroidal rotation and beam ion distribution on the features of high n harmonics are also investigated specifically. Toroidal rotation is found to suppress high n harmonics, which is more obvious for the modes driven by trapped particles. Nonlinear simulation results show that these non-resonant high n harmonics can induce larger energetic ion transport, which may affect the plasma confinement performance.

Funder

Key R&D Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3