Mass transport and thermal properties of liquid (melting to boiling point) tungsten: a molecular dynamics simulations

Author:

Gohil D R,Shankar A,Bhatt N KORCID

Abstract

Abstract We present molecular dynamics simulation to obtain melting point, structural and atomic transport properties of liquid tungsten. We considered the second-neighbor extended Finnis-Sinclair (EFS) potential as an effective interaction. We find melting temperature (T M) and density in agreement with the reported values. EFS potential gives accurate information for structure factor S(q), pair correlation function g(r), and transport coefficients like self-diffusion coefficient and viscosity upto ∼1.5T M. Large viscosity proposes the rheological nature of liquid W. The self-diffusion coefficient follows the Arrhenius law giving the activation energy 1.22 eV. We find ’shoulder’ in the second peak of S(q), which disappears with temperatures. This characteristic is attributed to the high density and clustering of W-atoms at the near-neighbor distance. The asymmetric first peak in g(r) and shoulder in S(q) proposes that the liquid W exhibits non-normal metallic behaviour. Discrepancy observed in caloric properties for temperature >6000 K is also discussed. We propose that the ’softness’ and broad dip in EFS potential are responsible for these discrepancies, and necessitate the inclusion of angular forces. The single particle correlation is discussed in terms of the velocity autocorrelation function and the long-wavelength limit of S(q) is utilized to derive adiabatic sound velocity in confirmation with reported results.

Funder

Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University

University Grants Commission, New Delhi, India

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3