Advanced fractional calculus, differential equations and neural networks: analysis, modeling and numerical computations

Author:

Baleanu DumitruORCID,Karaca YelizORCID,Vázquez Luis,Macías-Díaz Jorge EORCID

Abstract

Abstract Most physical systems in nature display inherently nonlinear and dynamical properties; hence, it would be difficult for nonlinear equations to be solved merely by analytical methods, which has given rise to the emerging of engrossing phenomena such as bifurcation and chaos. Conjointly, due to nonlinear systems’ exhibiting more exotic behavior than harmonic distortion, it becomes compelling to test, classify and interpret the results in an accurate way. For this reason, avoiding preconceived ideas of the way the system is likely to respond is of pivotal importance since this facet would have effect on the type of testing run and processing techniques used in nonlinear systems. Paradigms of nonlinear science may suggest that it is ‘the study of every single phenomenon’ due to its interdisciplinary nature, which is another challenge encountered and needs to be addressed by generating and designing a systematic mathematical framework where the complexity of natural phenomena hints the requirement of identifying their commonalties and classifying their various manifestations in different nonlinear systems. Studying such common properties, concepts or paradigms can enable one to gain insight into nonlinear problems, their essence and consequences in a broad range of disciplines all forthwith. Fractional differential equations associated with non-local phenomena in physics have arisen as a powerful mathematical tool within a multidisciplinary research framework. Fractional differential equations, as one extension of the fractional calculus theory, can yield the evolution of various systems properly, which reinforces its position in mathematics and science while setting stage for the description of dynamic, complicated and nonlinear events. Through the reflection of the systems’ actual properties, fractional calculus manifests unforeseeable and hidden variations, and thus, enables integration and differentiation, with the solutions to be approximated by numerical methods along with modeling and predicting the dynamics of multiphysics, multiscale and physical systems. Neural Networks (NNs), consisting of hidden layers with nonlinear functions that have vector inputs and outputs, are also considerably employed owing to their versatile and efficient characteristics in classification problems as well as their sophisticated neural network architectures, which make them capable of tackling complicated governing partial differential equation problems. Furthermore, partial differential equations are used to provide comprehensive and accurate models for many scientific phenomena owing to the advancements of data gathering and machine learning techniques which have raised opportunities for data-driven identification of governing equations derived from experimentally observed data. Given these considerations, while many problems are solvable and have been solved, efforts are still needed to be able to respond to the remaining open questions in the fields that have a broad range of spectrum ranging from mathematics, physics, biology, virology, epidemiology, chemistry, engineering, social sciences to applied sciences. With a view of different aspects of such questions, our special issue provides a collection of recent research focusing on the advances in the foundational theory, methodology and topical applications of fractals, fractional calculus, fractional differential equations, differential equations (PDEs, ODEs, to name some), delay differential equations (DDEs), chaos, bifurcation, stability, sensitivity, machine learning, quantum machine learning, and so forth in order to expound on advanced fractional calculus, differential equations and neural networks with detailed analyses, models, simulations, data-driven approaches as well as numerical computations.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference34 articles.

1. Introduction to fractional calculus with brief historical background;Lazarević;Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling,2014

2. Fractional calculus: history, definitions and applications for the engineer;Loverro;(Rapport Technique, University of Notre Dame: Department of Aerospace and Mechanical Engineering),2004

3. A brief historical introduction to fractional calculus;Debnath;Int. J. Math. Educ. Sci. Technol.,2004

4. Multi-chaos, fractal and multi-fractional AI in different complex systems;Karaca,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3