Enhanced optoelectronic activity of lead-free halide perovskites KMBr3 (M = Ge, Sn) under hydrostatic pressure

Author:

Sultana Aldina,Saiduzzaman MdORCID,Hossain Khandaker MonowerORCID,Ahmed Tanjun,Alam Safin,Biswas Arpon,Molla Riaz,Ahmad SohailORCID,Mitro S K

Abstract

Abstract The density functional theory was used to investigate lead-free tin- and germanium-based halide perovskites KMBr3 (M = Sn, Ge) under pressure (0 to 10 GPa). The structural, electronic, optical, and mechanical properties are inquired to determine their potentiality as future photovoltaic materials. The structure shows high accuracy in terms of lattice parameters, which goodly comply with previously reported data. The estimated band gap demonstrates the compounds’ semiconducting nature at zero pressure condition. But the increment of pressure lowers the band gap, improving their conductivity. Furthermore, charge density differences between K-Br and Sn(Ge)-Br are used to determine whether the bonds are ionic or covalent. Besides, the bond length consistently decreases, resulting in stronger bonding under pressure. In addition, the optical functions are improved by pressure, suggesting that these materials could be used in multiple optoelectronic devices operating in the visible and ultraviolet spectrums. Furthermore, the hydrostatic pressure has a prominent effect on the mechanical properties while maintaining stability. The ductile natures as well as the anisotropic behavior get more intensive under applied pressure.

Funder

Deanship of Scientific Research, King Khalid University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3