WSM-MIL: a weakly supervised segmentation method with multiple instance learning for C elegans image

Author:

Ding Mengqian,Liu Jun,Zhao Zikang,Luo Yang,Tang JinshanORCID

Abstract

Abstract Recently, image analysis techniques have been introduced to automate nematode information assessment. In image analysis-based nematode information assessment, the initial step involves detecting and segmenting C. elegans from microscopic images and network-based methods have been investigated. However, training a network for C. elegans image segmentation is typically associated with the labor-intensive process of pixel-level mask labeling. To address this challenge, we introduced a weakly supervised segmentation method using multiple instance learning (WSM-MIL). The proposed multi-instance weakly supervised segmentation method comprises three key components: a backbone network, a detection branch, and a segmentation branch. In contrast to fully supervised pixel-level annotation, we opted for weakly supervised bounding box-level annotation. This approach reduces the labour cost of annotation to some extent. The approach offers several advantages, such as simplicity, an end-to-end architecture, and good scalability. We conducted experiments comparing the proposed network with benchmark methods, and the results showed that the network exhibits competitive performance in the image segmentation task of C. elegans. The results of this study provide an effective method in the field of biological image analysis, as well as new ideas for solving complex segmentation tasks. The method is not only applicable to the study of C. elegans but also has wide applicability in biological image segmentation problems in other fields.

Publisher

IOP Publishing

Reference36 articles.

1. Exploring life at the single-cell scale;Jeremy Berg;World Science,2019

2. Longevity and aging;Kaeberlein;F1000prime reports,2013

3. Celeganser: automated analysis of nematode morphology and age;Wang,2020

4. U-net: convolutional networks for biomedical image segmentation. medical image computing and computer- assisted intervention-MICCAI 2015;Ronneberger,2015

5. Segmenting microscopy images of multi-well plates based on image contrast;Chen;Microsc. Microanal.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3