The role of a highly optimized approach with superior transparent conductive oxide anode towards efficient organic solar cell

Author:

Gogoi DipankarORCID,Das T D

Abstract

Abstract The effort emphasizes the numerical analysis of different transparent conducting oxides (TCOs) perspectives, which include ITO, FTO, AZO, and IZO anode-based organic solar cells (OSCs) with the drift-diffusion approach. The prior selection of aluminum-doped zinc oxide (AZO) as TCO is feasible for more extended transparency and antireflection due to a tailored absorption wavelength of <380 nm and the factors of higher mechanical flexibility, low-cost processing, and realistic performance at lower temperatures. To confirm the stability and reproducibility of the design OSC, the contribution of each interfacial layer thickness, i.e., AZO as TCOs, P3HT: PC61BM as an organic absorbing layer (OAL), Spiro-OMeTAD (SOT) as a hole-transport layer (HTL), and ZnO as an electron-transport layer (ETL), is also investigated. Furthermore, functions of optimum trap-state densities ( N t ) and charge carrier mobility ( μ n , p ) in OAL have been performed to aid in increasing the diffusion length of excitons carriers ( L n , p ). These properties led to better photogeneration and transport of charge carriers, decreasing the series resistance (RS), leading to lower bimolecular recombination, a long carrier lifetime ( τ n , p ), and consequently higher power conversion efficiency (PCE). The findings revealed that the proposed OSC structure achieves an excellent PCE of 10.28% for AZO as TCO with an 850 nm ultra-thick OAL under AM 1.5 G light irradiation. Hence, a better fabrication process for efficient OSC could also be improved by the optimization of all these critical factors for future research.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3