Analysis of Landau–Lifshitz and neo-Hookean models for static and dynamic acoustoelastic testing

Author:

Melnikov AndreyORCID,Malcolm Alison EORCID,Poduska Kristin MORCID

Abstract

Abstract A comparison of three different isotropic non-linear elastic models uncovers subtle but important differences in the acoustoelastic responses of a material slab that is subjected to dynamic deformations during a pump-probe experiment. The probe wave deformations are small and are superimposed on larger underlying deformations using three different models: Landau–Lifshitz (using its fourth-order extension), compressible neo-Hookean model (properly accounting for volumetric deformations), and an alternative neo-Hookean model (fully decoupled energies due to distortional isochoric and volumetric deformations). The analyses yield elasticity tensors and respective expressions for the propagation speeds of P-wave and S-wave probes for each model. Despite having many similarities, the different models give different predictions of which probe wave types will have speeds that are perturbed by different pump wave types. The analyses also show a conceptual inconsistency in the Landau–Lifshitz model, that a simple shear deformation induces a stress and a shear wave probe speed that depend on the second-order elastic constant λ, which controls resistance to volumetric changes and thus should not be present in the expressions for shear stress and shear wave probe speeds. Thus, even though the Landau–Lifshitz model is widely used, it may not always be the best option to model experimental data.

Funder

Natural Sciences and Engineering Research Council (NSERC) Canada

Chevron

InnovateNL

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3