Optimization of the structural and optical properties of ALD grown ZnO thin films for photocatalytic applications: thickness dependence

Author:

Shenouda S SORCID,Saif M,Baradács E,Parditka B,Fodor T,Erdélyi Z

Abstract

Abstract Thin films of ZnO with different thicknesses (ranging from 8 to 40 nm) have been prepared by plasma-enhanced atomic layer deposition. Grazing incidence x-ray diffraction shows the nano-crystalline structure of the films with high degree of disorder. The films have also lattice oxygen and non-lattice oxygen where the film with 20 nm thickness has the highest percentage of the non-lattice oxygen. These films have indirect optical transitions. The energy gap increases slightly with decreasing the film thickness (2.96, 3.03 and 3.16 eV for the thicknesses 40, 20 and 8 nm, respectively). These films have strong photocatalytic activity to treat the water from the organic dyes such as Levafix Brilliant Red. The film with thickness 20 nm has the optimum photocatalytic activity and the lowest contact angle with water. The photoinduced super-hydrophilic nature of ZnO film (20 nm) renders this film suitable for antifogging application. The high photocatalytic activity and super-hydrophilicity are due to the low recombination rate of charge carriers accompanied to the excess of oxygen vacancies and the high degree of structural disorder.

Funder

National Research, Development and Innovation Fund of Hungary

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3