Influence of coulomb damping on wave propagation behaviors of nonlinear nonconservative phononic chains/lattices

Author:

Sepehri Soroush,Bodaghi MahdiORCID

Abstract

Abstract Fascinating nonlinearity-induced behavior of phononic crystals (PCs) has recently become a hot research topic in the community. However, due to the limitations in the analytical modelling of damping in dynamic systems, the study of damped PCs has not received proper attention. In this paper, the influence of Coulomb damping on the wave propagation behavior of cubically nonlinear monoatomic phononic chains is investigated. To do so, the nonlinear dispersion relation is obtained analytically using the well-established multiple scales method and the band structure of the damped nonlinear chains is compared to the ones corresponding to the linear and nonlinear undamped chains. Due to the coupling between the amplitude and the frequency, stemmed from the nonlinear nature of the chain, Coulomb damping can lead to lower dispersion frequencies in the chain. The formulation and results are then expanded to 2D nonlinear lattices. The present manuscript is the first attempt to capture the effect of Coulomb damping on the wave propagation behavior of nonlinear lattices and the results put us one step closer to developing a comprehensive analytical model for the behavior of damped PCs which can in turn lead to invaluable design concepts for nonlinear nonconservative wave-manipulation devices.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference48 articles.

1. 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation;An;Int. J. Solids Struct.,2020

2. A nonlinear metamaterial plate for suppressing vibration and sound radiation;Fang;Int. J. Mech. Sci.,2022

3. Bandgap properties and multi-objective optimization of double-cone pentamode metamaterials with curved side;Zou;Phys. Scr.,2023

4. Dissipative multi-resonator acoustic metamaterials for impact force mitigation and collision energy absorption;Li;Acta Mech.,2019

5. Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting;Sugino;J. Phys. D: Appl. Phys.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3