Optical fiber sensor based on magneto-optical surface plasmon resonance with ultra-high figure of merit

Author:

Yan JixuanORCID,Xu Yangyang,Ding JinghuiORCID,Zhu Xiao-Song,Shi Yi-Wei

Abstract

Abstract Compared to surface plasmon resonance (SPR), the sensors based on the magneto-optical SPR (MOSPR) technique have much higher figure-of-merit (FOM). However, there are no reports about applying MOSPR in the optical fiber structure now. In this work, a novel D-shaped optical fiber sensor based on the MOSPR technique is proposed. The D-shaped optical fiber is coated with a thin silver film and a magneto-optical (MO) material film of Cerium-doped Yttrium-Iron garnet (CeYIG). By applying a magnetic field on the sensing region, the magneto-optical Kerr effect (MOKE) of the CeYIG layer and the related MOSPR phenomenon could be excited when appropriate light is transmitted in the proposed optical fiber sensor. The influence of the structural parameters including the residual cladding thickness, silver and MO material film thicknesses are analyzed theoretically by the finite element method (FEM). With the optimal parameters, the sensor achieves the sensitivity of 5304 nm RIU−1. Since the peak width of MOSPR spectra is much narrower than that of the SPR spectra, the FOM of the sensor is largely enhanced to 3864 RIU−1 on average and 13260 RIU−1 in maximum, which surpasses the optical fiber SPR sensors vastly. The miniaturized and simple design of the D-shaped optical fiber MOSPR sensor, coupled with the ultra-high FOM, offers itself great potential in biochemical sensing applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference34 articles.

1. I. Experimental researches in electricity;Faraday;Nineteenth series Philosophical Transactions of the Royal Society of London,1846

2. XLIII. On rotation of the plane of polarization by reflection from the pole of a magnet;Kerr;The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1877

3. XXIV. On reflection of polarized light from the equatorial surface of a magnet;Kerr;The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1878

4. Magnetoplasmonics: combining magnetic and plasmonic functionalities;Armelles;Adv. Opt. Mater.,2013

5. Low-dimensional multiplexing: the magneto-optical Kerr effect in an individual FeCoCu nanowire;Torres-Torres;Nanotechnology,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3