Information theoretic measures on the two-photon transitions of hydrogen atom embedded in weakly coupled plasma environment

Author:

Mondal S,Saha J KORCID,Mukherjee P KORCID,Fricke B

Abstract

Abstract The quantum information theoretic measures in terms of Shannon entropy and Fisher entropy (both in position and momentum spaces) on the ground, excited as well as virtual states arising out of the two-photon transitions (1snl; n = 2 − 4, l = 0, 2) of H atom embedded in classical weakly coupled plasma environment are done for the first time. Fourth order time dependent perturbation theory is adopted within a variational framework for calculating the two photon excitation energies and their respective wavefunctions from an analysis of the pole positions of the non linear response of the system. The representation of virtual state follows from an analysis of the linear response at such poles using a novel method developed by us. Ground and perturbed state wave functions of appropriate symmetries are represented by linear combination of Slater-type orbitals. The analytic form of the momentum space wave functions of ground, excited and virtual states are determined by taking Fourier transformation of the respective position space wave functions. The quantum information measures give interesting insights on the delocalization patterns of the all the real and virtual states under question w.r.t. the increase in plasma strength. The estimated data values are found to be in excellent agreement with the few existing in literature for the ground as well as excited states participating in the two-photon transitions. Such data for the virtual states are completely new and can be set as benchmark for future works in related disciplines.

Funder

Department of Science and Technology, Government of West Bengal

Alexander von Humboldt-Stiftung

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3