An integral representation for quantum amplitudes

Author:

Straton Jack CORCID

Abstract

Abstract The central impediment to reducing multidimensional integrals of transition amplitudes to analytic form, or at least to a fewer number of integral dimensions, is the presence of magnitudes of coordinate vector differences (square roots of polynomials) x 1 x 2 = x 1 2 2 x 1 x 2 cos θ + x 2 2 in disjoint products of functions. Fourier transforms circumvent this by introducing a three-dimensional momentum integral for each of those products, followed in many cases by another set of integral representations to move all of the resulting denominators into a single quadratic form in one denominator whose square my be completed. Gaussian transforms introduce a one-dimensional integral for each such function while squaring the square roots of coordinate vector differences and moving them into a common exponential. Addition theorems may also be used for extracting the angular variables, and sometimes direct integration is even possible. Each method has its strengths and weaknesses. An integral representation is derived herein that stands as an alternative to these four approaches. A number of consequent integrals of Macdonald functions, hypergeometric functions, and Meijer G-functions with complicated arguments are given.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3