Temperature-controlled tunable metamaterial absorber based on vanadium dioxide with ‘switch’ functionality

Author:

Zhu JunORCID,Pan Zhe,Tang Jian

Abstract

Abstract The performance of traditional absorbers is fixed in a specific frequency or wavelength range, and the actual application often needs to adjust the absorption characteristics according to different scenarios or needs. A THz wave modulator, utilizing temperature-controlled phase change materials, is proposed to address the limitation of absorbers’ inability to adjust to external environments. Tunable absorber is a kind of device with dynamic regulation ability, and its absorption characteristics can be adjusted and optimized according to external conditions. This modulator enables the switch function of metamaterial absorbers, comprising a gold reflector layer, a silicon dioxide depletion layer, and a vanadium dioxide pattern layer. Simulations via finite element method reveal two nearly perfect absorption peaks, up to 99.99%. As temperature rises, absorption rates increase, stabilizing gradually after vanadium dioxide transitions from insulating to metallic phase. With a modulation depth of 98.49%, the absorber achieves adjustability. It enables polarization-independent absorption of electromagnetic waves, exhibiting strong absorption at incident angles from 0° to 50° for TE and TM waves. Leveraging vanadium dioxide’s phase change characteristics, the absorber can switch between ON and OFF states based on temperature changes, promising potential applications in light modulation and THz absorbers.

Publisher

IOP Publishing

Reference50 articles.

1. Polarization insensitive terahertz metamaterial absorber;Grant;Opt. Lett.,2011

2. Experimental realization of a terahertz all-dielectric metasurface absorber;Liu;Opt. Express,2017

3. Perfect metamaterial absorber;Landy;Phys. Rev. Lett.,2008

4. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency;Zhang;Opt. Express,2014

5. The vanadium Magnéli phases VnO2n-1;Schwingenschlögl;Ann. Phys.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3