A flexible floating-gate based organic field-effect transistor non-volatile memory based on F8BT/PMMA integrated floating-gate/tunneling layer

Author:

Shu ShiyaoORCID,Xu TingORCID,Su JieORCID

Abstract

Abstract The solution mixing method was adopted to build polymer semiconductor poly(9,9-dioctylflfluorene-co-benzothiadiazole) (F8BT) nanoparticles (NPs), which were mixed with poly (methyl methacrylate) (PMMA) in a solution to prepare an integrated floating-gate/tunneling layer. On this basis, flexible floating-gate based organic field-effect transistor non-volatile memories (F-OFET-NVMs) were prepared. The intrinsic correlations of the microstructures in the integrated floating-gate/tunneling layer of the memory devices with the device performance were explored. Moreover, correlations of the charge injection and discharge, physical mechanism of memory, and charge trapping capacity of the floating-gate/tunneling layer with different F8BT/PMMA mass ratios with the key parameters of memory devices were investigated. Relevant results indicate that the memory devices are able to well trap charges inside the F8BT NPs during operation at a programming voltage of +40 V, an erasing voltage of −40 V, and a pulse width of 1 s. The floating gate acquires the injected and trapped bipolar charges (electrons and holes). The optimized high-performance memory device is found to have an average memory window of 9.5 V, remain stable for more than three years, and have reliable stability in more than 100 erase/write cycles. Furthermore, the memory device also exhibits outstanding durability under mechanical bending and still has high storage stability after 6,000 times of bending with a bending radius of 3 mm. The research results powerfully promote the research progress of applying semiconductor polymers to memory devices.

Funder

Natural Science Foundation

Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3