Exploring terra incognita in the phase diagram of strongly interacting matter—experiments at FAIR and NICA

Author:

Senger P

Abstract

Abstract The fundamental properties of dense nuclear matter, as it exists in the core of massive stellar objects, are still largely unknown. The investigation of the high-density equation of state (EOS), which determines mass and radii of neutron stars and the dynamics of neutron star mergers, is in the focus of astronomical observations and of laboratory experiments with heavy-ion collisions. Moreover, the microscopic degrees-of-freedom of strongly interacting matter at high baryon densities are also unknown. While Quantum-Chromo-Dynamics (QCD) calculations on the lattice find a smooth chiral crossover between hadronic matter and the quark-gluon plasma for high temperatures at zero baryon chemical potential, effective models predict a 1st order chiral transition with a critical endpoint for matter at large baryon chemical potentials. Up to date, experimental data both on the high-density EOS and on a possible phase transition in dense baryonic matter are very scarce. In order to explore this terra incognita, dedicated experimental programs are planned at future heavy-ion research centres: the CBM experiment at FAIR, and the MPD and BM@N experiments at NICA. The research programs and the layout of these experiments will be presented. The future results of these laboratory experiments will complement astronomical observations concerning the EOS, and, in addition, will shed light on the microscopic degrees of freedom of QCD matter at neutron star core densities.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3