Computational study of the electronic structure of the Srm+Kr (m = 0, 1) van der Waals complexes

Author:

Slama MarwaORCID,Habli Héla,Jellali SoulefORCID,Ben El Hadj Rhouma Mounir

Abstract

Abstract A computational study of the electronic structure of the SrKr and Sr+Kr molecular systems is presented in this paper. The theoretical approach is based on the pseudo-potential technique for Sr++Kr interaction and core-valence correlation for the one and two electrons-Sr++Kr interaction. The potential energy surfaces (PESs), spectroscopic parameters, electric dipole moments (EDM), and the vibrational levels’ spacing for all electronic states are calculated. The accuracy of the current spectroscopic results is discussed by comparing them to the available experimental and theoretical data. It is interesting to note that several avoided crossings (ACs) have occurred between the high-lying 2Σ+ excited states. Each curve exhibits ionic and neutral branches in the AC region, yielding the appearance of the ionic character and the illustration of charge transfer.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structures and stability of K+ cation solvated in Arn clusters;Journal of Molecular Graphics and Modelling;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3