Fast crystallization of InSe thin films via pulsed laser welding technique and effect of crystallinity on the optical and dielectric properties

Author:

Khusayfan Najla M,Qasrawi A FORCID,Khanfar Hazem KORCID,Alharbi Seham R

Abstract

Abstract In the current study the crystalline phase of indium selenide thin films which were grown by the thermal evaporation technique is achieved via pulsed laser welding technique (PLW) in a second. The films crystallinity is achieved under various welding conditions including the pulse width ( PW ), repetition frequency ( f r ) and pulse diameter ( d ). The optimum parameters for obtaining well crystalline phase are PW = 1.0 ms, f r = 10 Hz and d = 1.0 mm. PLW induced crystallinity showed preferred structure relating to monoclinic phase of InSe. Compositionally while amorphous films exhibited In2Se3 chemical structure, crystalline ones preferred InSe phase. Associated with this type of crystallinity, direct and indirect energy band gap values of 2.32 eV and 3.12 eV are determined. The crystalline films showed lower dielectric constant value accompanied with higher optical conductivity and higher terahertz cutoff frequency in the infrared range of light. In addition the dielectric dispersion spectra were treated using Drude–Lorentz model to read the optical conductivity parameters for the PLW assisted crystalline InSe terahertz resonators. The treatment showed that the crystallinity of the films resulted in improved free carrier density, longer relaxation times at femtosecond level, larger plasmon frequencies and higher drift mobility values. These features together with the response of terahertz cutoff frequency to IR excitations make crystalline InSe thin films promising for optoelectronic and terahertz technology applications.

Funder

University of Jeddah, Jeddah, Saudi Arabia

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3