Abstract
Abstract
In this paper, the design of large-scale quasi-periodic Vibration Energy Harvesters (VEH) is optimized to enhance the harvested power of an electromagnetic mode localized structure. This work aims to optimize the output power by employing the energy localization phenomenon in a large-scale periodic configuration by introducing the minimum number of perturbations. The harvested power, number and location of perturbations are among the objectives that need to be optimized. A genetic-based mixed-integer optimization algorithm is used to meet the objective functions within a constraint on the system kinetic energy. Numerical simulations for quasi-periodic systems with 20 and 100 Degrees of Freedom (DOF) are performed. It is shown that the ratio of harvested power increases as the number of perturbations rises and it exceeds 80% of the total output power by perturbing almost one-third of the total DOFs. The proposed methodology is a decision-making aid to provide an optimal design in a generalized quasi-periodic VEH in order to reduce the number of harvesting transducers while providing a significantly high amount of harvested power.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献