Blaze-angle led dark-blue iridescence and superhydrophobicity features of non-morpho Euploea midamus butterfly wing scale

Author:

Das Bikash KORCID,Dubey Mahesh C,Mohanta DambarudharORCID

Abstract

Abstract We report on backlit iridescent blue structural coloration as well as superhydrophobicity in a non-morpho butterfly of Euploea midamus (blue-spotted crow) belonging to the Lepidoptera order. Select forewing and hindwing parts were characterized by employing optical microscopy, field emission electron microscopy, UV–vis-NIR spectrophotometry, and an advanced contact angle meter. As substantiated from variable incident angle reflectance spectra and chromaticity plots, the apparent visual effect is most pronounced in the forewing case and at an incident angle of 30–40°, with reflectance peak maxima positioned at ~ 412 nm and 478 nm. Additionally, the forewing scale of this butterfly acts as an anti-reflection filter (< 460 nm) for p-polarized light, showing greater polarization anisotropy in the lower wavelength region. Numerical simulationand microstructure-based analytical calculations with blaze angle grating effects have been considered to elucidate the observed dark-blue iridescence at large. Moreover, both the forewing and hindwing of the butterfly exhibit the ‘lotus effect’, with a contact angle as high as of ~ 150°, low contact angle hysteresis (16° and 13°) as well as low roll-off angles (10° and 7°) to favor self-cleaning action. Theoretical calculations attributing to dual roughnesses would encompass micro-textured and nanoscale asperities within the wing scale interface. The scope of the bifunctional features including optical and dewetting responses in natural systems would provide valuable insights and clues for biomimetics, particularly in nanophotonic and nanocoating applications.

Funder

SERB, New Delhi

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3