Analog and digital resistive switching in W/TiO2/ITO devices: the impact of crystallinity and Indium diffusion

Author:

K BhagyalakshmiORCID,Kuyyadi P BijuORCID

Abstract

Abstract The resistance-switching memristor with capabilities of information storage and brain-inspired computing has prime importance in recent research. In this study, the impact of crystallinity and Indium diffusion on the existence of analog and digital resistive switching in a W/TiO2/ITO device has been reported. The memristor devices are fabricated by depositing titania films by sol–gel and spin-coating techniques. The films annealed at 250 °C and 400 °C were characterized using x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy (XPS). The characteristic anatase phase started appearing after annealing at 400 °C, whereas the 250 °C annealed sample was in the amorphous state. The electrical characterization revealed significant differences in the switching characteristics of amorphous and crystalline samples, especially in the switching interface, compliance properties, and current conduction mechanism. The grain boundary assisted oxygen vacancy migration, and the diffusion of indium ions from the ITO bottom electrode helped the crystalline sample to show highly stable and reproducible resistive switching compared to amorphous film. The XPS studies confirmed the indium ion diffusion in the crystalline sample. The oxygen vacancy-induced barrier modulation and conductive filament formation caused characteristic switching in amorphous and crystalline samples, respectively. Schottky emission in the amorphous film and SCLC mechanism in the crystalline film confirmed the experimental results. This study provides a distinctive viewpoint and an innovative strategy for developing multifunctional resistive switching devices.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3