Hollow core negative curvature fiber based refractive index sensor design and investigation for tuberculosis monitoring

Author:

Parvin Tarunnum,Abdulrazak Lway FaisalORCID,Zahrani Fahad Ahmed Al,Mitu Sumaiya Akhtar,Hossain Md Nadim,Ahmed KawsarORCID,Bui Francis MORCID

Abstract

Abstract A myriad of pensile but pertinent issues found in the optical fiber sensors can be sought resolution based on the antiresonant reflecting optical waveguide (ARROW) working principle. Due to its compact structure, the anti-resonance based sensor has several advantages such as high sensitivity response, low confinement loss, and high stability that make the sensor more effective for health monitoring. In this manuscript, an anti-resonance fiber sensor has been proposed for the detection of tuberculosis cells. An analytical structure has been explored to simulate the characteristics of the ARROW. For the suggested structure, the Finite Element Method (FEM) is used to conduct its numerical investigations. The proposed optical sensor working on the ARROW principle was implemented on the Comsol Multiphysics software. From the numerical analysis, it is noted that the designed sensor has reached around 99% sensitivity with negligible confinement loss and single modality due to the excellent light-guiding properties of the anti-resonance fiber. Besides, lots of optical parameters such as effective area, V-Parameter, spot-size along beam divergence have been calculated over the wide wavelength region. The achieved result indicates the various application’s suitability of Antiresonant Hollow-Core Fiber (ARHCF) as a tuberculosis sensor.

Funder

Natural Sciences and Engineering Research Council of Canada

National Science, Technology and Innovation Plan

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3