Experimental investigation of some photon interaction parameters of popular restorative dental materials with a non-destructive technique

Author:

Kalecik SedanurORCID,Yılmaz Demet,Gürol Ali,Özdoğan Alper,Kurucu Yakup

Abstract

Abstract Dental restorative materials are widely used to restore esthetics and function in prosthetic treatments. In this paper, reflection coefficients and effective atomic numbers of some restorative materials (Polyetheretherketone (PEEK), feldspathic porcelain (veneering porcelain on cobalt–chromium alloy as metal framework), lithium disilicate glass-ceramic, zircon core (veneering porcelain on yttria-stabilized tetragonal zirconia polycrystal), monolithic zirconia, and zirconia-reinforced lithium silicate glass ceramic) were measured by using 59.54 keV energy gamma rays emitted from an Am-241 radioactive source. The scattering peaks of the restorative materials were detected using an HPGe detector. The gamma radiation absorption parameters of these materials (MAC, LAC, MFP, and HVL) were also investigated using a ULEGe detector for 59.54 keV photons. It is observed that the largest MAC value is Monolithic zirconia. The material with the highest reflection parameter was found to be PEEK. Of the dental restorative materials investigated, PEEK has the lowest effective atomic number value of 21.650 and Monolithic zirconia has the highest effective atomic number value of 37.841. Effective atomic numbers can be used in non-destructive analysis and medical imaging, as is well known. In addition, the calibration curve obtained can be used in the qualitative analysis of different restorative and implant materials.

Funder

Atatürk Üniversitesi

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3