Enhanced current-carrying capability in YBCO coated conductor bilayers for high-field applications

Author:

Aye M MORCID,Rivasto EORCID,Zhao YORCID,Huhtinen HORCID,Paturi PORCID

Abstract

Abstract We have investigated the impact of bilayer structures on the critical current density, J c, of YBa2Cu3O6+x (YBCO) coated conductor films, i.e. films grown on buffered metal substrates, under varying temperature and magnetic field conditions. The bilayers consisted of a YBCO layer free of artificial pinning centers and 8 wt% BaZrO3-added (BZO) layer on top, where the thickness percentage of the layers was varied from 0 to 100 %. The results reveal that the bilayer configuration enhances J c at temperatures below 60 K, with a significant improvement in high magnetic fields (5–8 T) and temperatures ≤20 K. The optimal BZO-added layer thickness was found to be approximately 70 %, reaching 80 % at 8 T. Structural examinations indicate improved growth of YBCO and BZO nanorods in the bilayer structure with BZO-added layer thickness ≤80 %. Theoretical model of the bilayer structure considering the layers as two parallel superconductors with different properties was developed. It was found that the model adequately explains all the experimentally observed tendencies, and thus the observed maximum in J c is due to better growth of the BZO-added layer. The study provides valuable insights for designing optimal bilayer structures for diverse applications operating in different temperature and magnetic field regimes.

Funder

CSC - IT Center for Science

Jenny ja Antti Wihurin Rahasto

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3