Synthesis of cerium-doped gadolinium gallium aluminum garnet (GGAG:Ce) scintillating powder via solvothermal method

Author:

Oad Nisha,Pandya Divya,Rawat SheetalORCID,Chandra Prakash,Tyagi Mohit,Tripathi Brijesh,Gurrala Pavan

Abstract

Abstract The powder material Gd3Ga3Al2O12:Ce (GGAG doped with Cerium) has garnered significant attention in radiation detection due to its high light yield and rapid decay time. Despite its potential, the synthesis of high-quality and reproducible GGAG:Ce scintillating powder remains a considerable challenge. In this study, we present a solvothermal approach with an annealing temperature of 1300 °C for producing cerium-doped GGAG powder with varying concentrations (4, 2, and 0.5 mol%). The structural and luminescent characteristics were meticulously examined using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL), radioluminescence (RL) spectroscopy, and X-ray photoelectron spectroscopy (XPS). XRD analysis confirmed the single-cubic phase garnet structure of the synthesized powder. By comparing the intermediate solvothermal products synthesized at different sintering temperatures (900 °C for 3 h and 1300 °C for 1 and 3 h), a direct correlation between solvothermal conditions and the structure/property relationships of the product was established. FESEM images revealed an ellipsoidal to irregular morphology of the as-synthesized GGAG:Ce microparticles, ranging from 0.1 to 0.3 μm, regardless of the Ce concentration. PL spectra demonstrated a strong emission peak at approximately 550 nm, characteristic of Ce3+ ions. RL data confirmed the peak luminescence at around 550 nm, with an almost twofold increase in intensity as the concentration of Ce3+ increased from 0.5 mol% to 4 mol%. XPS data disclosed the Ce3+/Ce4+ ratio in solvothermally synthesized GGAG:Ce, wherein Ce loading of 4 mol% demonstrated the increase in Ce3+ concentration to 95%, whereas the concentration of Ce4+ decreased to 5%. Notably, the highest luminescence efficiency was achieved with GGAG:Ce at a 4 mol% concentration. Thus, the solvothermal method employed in GGAG:Ce synthesis presents a straightforward approach, yielding rapid results with precise control over particle morphology and size.

Funder

Board of Research in Nuclear Sciences

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3