Tellurite glass based optical fiber for the investigation of supercontinuum generation and nonlinear properties

Author:

Amin RuhulORCID,Abdulrazak Lway FaisalORCID,Tahhan Shaymaa RORCID,Mohammadd NoorORCID,Ahmed KawsarORCID,Bui Francis MORCID,Ibrahim Sobhy M

Abstract

Abstract This manuscript introduces a unique tellurite core-based photonic crystal fiber (PCF) with silica clad and circular air holes, which manifests highly birefringent and non-linear characteristics. Several optical features, such as birefringence (Br), nonlinear coefficients (NLC), dispersion (D), confinement loss (CL), material loss, etc are thoroughly analyzed and explored by applying the finite element method (FEM). The simulated outcomes validate that by optimizing the formation of the cladding region, a large NLC of 7650 W 1 Km 1 , as well as an ultra-high Br of 11.2810 2 and zero-dispersion can be accomplished in the offered PCF design at 1.56 μm wavelength. Moreover, the evaluated findings indicate that the stated fiber structure is capable of generating a wide supercontinuum spectrum spanning from 943 to 8038 nm when augmented with a 4.5 kW input power and a pulse duration of 20 f s . Calculations and analyses have been carried out on the effects of higher-order dispersion co-efficients, pulse length and input power on spectrum broadening. The advanced PCF design will be a suitable candidate for practical applications in numerous fields, including bio photonics, biomedical imaging, biosensing, spectroscopy and ultra-broadband signal amplification, etc.

Funder

King Saud University, Riyadh, Saudi Arabia

Natural Sciences and Engineering Research Council of Canada

Researchers Supporting Project

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3