Abstract
Abstract
Through utilizing numerical simulation methods, the flow state of the molten pool during the vacuum self-consumption melting process of titanium alloy was analyzed. The influence of the stable arc cycle on the shape of the molten pool, dendrite arm spacing, surface quality, and shrinkage cavity was examined. The results showed that without an external magnetic field, the molten pool for smelting a Φ720 mm specification titanium alloy ingot is dominated by self-inductance magnetic force, leading to a downward flow in the central part of the melt. A mere 0.5 G stray magnetic field can result in Ekman pumping, causing an upward secondary flow in the core to counteract it. At an externally added magnetic field strength of 50 G, choosing a 10 s-20 s cycle can achieve a relatively stable double loop flow pattern. The shape of its molten pool, dendrite arm spacing, and contact ratio all reach optimal performance, thus verifying the possibility and feasibility of the double loop flow, and the macroscopic segregation of the simulated ingots essentially matches the experimental results, aiming to provide references for selecting parameters in actual production.
Funder
Resources Comprehensive Utilization's Open Subject Funding Project