Band gap and pseudocapacitance of Gd2O3 doped with Ni0.5Zn0.5Fe2O4

Author:

Azeem MORCID,Abbas Q,Abdelkareem M A,Olabi A G

Abstract

Abstract Herein, we present a detailed study of the structural, optical, and electrochemical responses of Gd2O3 doped with nickel zinc ferrite nanoparticles. Doping of Ni0.5Zn0.5Fe2O4 nanoparticles to Gd2O3 powder was done through thermal decomposition at 1000 °C. The average grain size of the mixture was determined to be approximately 95 nm, and phases of cubic Gd2O3, GdO, and orthorhombic prisms of GdFeO3 were identified. The focused ion beam energy dispersive x-ray spectrum (FIB-EDX) mapping results clearly show the morphology of the particles with Gd and Fe as the dominant elements. The structural data were compared with the spectroscopic measurements confirming the formation of multiple phases of oxides and ferrites. The measured optical band gap is significantly redshifted to 1.8 eV and is close to that of nitride compounds of gadolinium metal. The measured specific capacitance was almost 7 Fg−1 at a current density of 1 Ag−1, showing a small drop of 27% when the current density is increased to 10 Ag−1. Cyclic voltammetry (CV) plots of the ferrite doped Gd2O3 electrode at a scan rate of 5 to 100 mV s−1 indicate the pseudocapacitive nature of the material.

Funder

University of Sharjah

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3