Structural design of two types of composites with high resistance to atomic oxygen attack based on polyimide matrices: a molecular dynamics simulation study

Author:

Wei DahaiORCID,Zeng FanlinORCID,Cui Jianzheng

Abstract

Abstract Because of their exceptional properties, polyimide (PI) polymers are widely used in various types of spacecraft. However, in low Earth orbit, spacecraft using these polymers are susceptible to atomic oxygen (AO) erosion, which will cause them to lose their original performance. Covering the PI surface with a protective coating and adding fillers to the PI matrix are two traditional methods to improve the AO erosion resistance of PI. However, a single protective method does not provide a good protective effect and does not necessarily balance the relationship between the AO resistance of the composites and other properties, such as mechanical properties. The structural design of composites can perfectly solve such problems. Therefore, two kinds of AO-resistant materials based on the PI matrix are designed in this paper, one is a hybrid-filled composite with nano-silica filler and graphene filler, and the other is a double-layer coated composite based on the structural design of a traditional bulletproof vest. And the AO incidence simulation of these two types of materials was carried out using ReaxFF-based MD simulation. The results show that the mixed filling of graphene and nano-silica not only greatly improves the AO resistance of the PI matrix, but also greatly improves the tensile mechanical properties of the matrix by adjusting the appropriate mixing ratio. The structure of PI-Gr-SiO2 (The structures are PI, Gr and SiO2 from bottom up, respectively. SiO2 will be the first to take the impact of AO.) possesses excellent resistance to AO erosion, and at the end of 64 ps of AO erosion, the PI matrix did not suffer any damage. This paper provides a new idea of material structure design using the MD method, which provides a new approach to improve the AO erosion resistance of PI and is expected to design new composites adapted to a variety of extreme environments in the future.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3