Hydrogen bonds determine the nonbonding adhesion at HMX-based PBX interface

Author:

Zhang Xinke,Li Shuang,Kang JunORCID,Su JiayeORCID,Deng Kaiming

Abstract

Abstract Polymer bonded explosives (PBXs) are kind of composite materials consisting of multi-layers structures, where the interfacial interactions can significantly affect their structures, properties and performance. To investigate the determinant factors affecting the interfacial interactions, in this work, the adhesion works at different interfaces are studied by molecular dynamics simulations. A key observation is that the hydrogen bonds are found to be a decisive factor that directly affects the interfacial interactions. When the fluoropolymers change from F2321 to F2319, the adhesion works with the HMX and coupling agent layer present a monotonous decrease and increase, respectively, corresponding to the changes in the number of weak hydrogen bonds. Thus the hydrogen bonds can be utilized to benchmark the nonvalent interfacial interactions. Moreover, the coupling agent layer as an intermediary enhances the adsorption between the explosive crystal and the binder, whose thickness significantly impacts the interfacial interactions. Its interactions with the HMX and fluoropolymers both show a similar increase with respect to its thickness and then stabilize at the thickness above 2.5 nm, corresponding to a surface density of six KH550 chains per nm2. This study provides a basic understanding of the nonbonding adhesion mechanisms in the PBXs and is helpful for the material selection and structure design.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3