A fractional-order CNN hyperchaotic system for image encryption algorithm

Author:

Wang Yanzhang,Yang Feifei

Abstract

Abstract This paper proposes a fractional-order cellular neural network (CNN) chaotic system for image encryption algorithm to explore the application of fractional-order CNN hyperchaotic system in chaotic secure communication. Firstly, a fractional-order CNN hyperchaotic system is defined based on CNN hyperchaotic system. The numerical solutions of the fractional-order CNN hyperchaotic system are calculated by Adomian decomposition algorithm. The dynamic characteristics of the of the fractional-order CNN hyperchaotic system are analyzed. Then to verify the image encryption application of the fractional-order CNN hyperchaotic system, we designed an image encryption scheme through fractional-order CNN hyperchaotic sequence, the principle of symmetry of main diagonal of matrix and XOR operation. Finally, the results illustrate that the fractional-order CNN hyperchaotic sequence has good randomness, which show that the fractional-order CNN hyperchaotic system more suitable for chaotic secure communication applications. The security performances of the algorithm show that the designed algorithm can effectively encrypt and decrypt image, and has better security performance.

Funder

automation engineering experimental teaching center

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3