An efficient finite difference approach to solutions of Schrödinger equations of atoms in non-linear coordinates

Author:

Dong ShenghaoORCID,Sarwono Yanoar PribadiORCID,Zhang Rui-QinORCID

Abstract

Abstract We present a transformed-coordinates method to solve the Schrödinger equation for H-like, He-like, and Li-like systems. Each Cartesian axes of the original Schrödinger equation is transformed to another coordinate system with the square root transformation x = x 1 / 2 . The resulting Hamiltonian contains the first and the second derivative for the kinetic energy part and with the potential proportional to the power of four, decaying faster than the original Coulomb potential. The total energies, their components, and the virial ratio are superior to those of the untransformed coordinates due to the considerably many data-points obtained and long-range sampling. Furthermore, a five-times or better computational efficiency is demonstrated in comparison to the standard method with much-improved accuracy. In agreement with the accurate method, the obtained wavefunction includes not only the radial but also the angular electron correlation of many-electron ions or atoms.

Funder

China Academy of Engineering Physics

National Natural Science Foundation of China

Beijing Computational Science Research Center, Beijing, China

NSAF

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3