Neutron yield as a measure of achievement nuclear fusion using a mixture of deuterium and tritium isotopes

Author:

Youssef Ahmed,Anwar Rania,Bashter Ibrahim,Amin Esmat,Reda Sonia M.ORCID

Abstract

Abstract A mixture of deuterium (D) and tritium (T) is the most likely fuel for fusion reactors and hence the D(d,n)3He and T(d,n)4He fusion reactions are the ones that will fire fusion reactors in the future. Both of the fusion reactions produce neutrons which escape form the reactor core and can be measured directly outside the core. As the neutrons have large mean free path and neutral charge, they readily carry information about the burning fusion plasma from inside to outside the reactor core without being affected by electric or magnetic fields. From the produced neutrons of the D(d,n)3He and T(d,n)4He fusion reactions, the neutron yield of each reaction and the neutron yield ratio of the two reactions are calculated. This ratio is of critical importance for controlling the fusion fuel burning which is a high priority issue for fusion reactor performance. Because it is very difficult to measure this ratio experimentally, accurate theoretical calculations of the neutron yield ratio besides the related deuterium and tritium energy spectra in the fusion plasma are needed. In the present work, neutron yields of the D(d,n)3He and T(d,n)4He fusion reactions have been calculated using the MCUNED, the ENEA-JSI, the DDT codes and the Geant4 toolkit. The related deuterium and tritium energy spectra have been calculated by the MCUNED code. The relation between the ion temperature and the neutron yield in the imploded fusion plasma is discussed. Calculations are compared to the available experimental data. Comparing to the other codes, the spectrum of the fusion neutrons simulated by the MCUNED is the only one that fit the experimental data.

Funder

Egyptian Academy of Scientific Research and Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of lithium extraction from natural resources;International Journal of Minerals, Metallurgy and Materials;2022-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3