Mesoscopic simulation of MHD mixed convection of non-newtonian ferrofluids with a non-uniformly heated plate in an enclosure

Author:

Hossain Amzad,Nag Preetom,Molla Md MamunORCID

Abstract

Abstract Mixed convective study has been popular in recent years because of its large applications, including the cooling of electronic devices, furnaces, lubrication technologies, high-performance building insulation, multi-shield structures used in nuclear reactors, food processing, glass manufacturing, solar power collectors, drying technologies, chemical processing equipment, and others involve mixed convection in a lid-driven cavity flow problems. Graphics process unit (GPU) based multiple-relaxation-time(MRT) lattice Boltzmann method (LBM) has been employed for investigating the numerical simulation of magnetohydrodynamic(MHD) mixed convection with a non-uniformly heated plate at the mid of an enclosure. The physical model consists of a two-dimensional square enclosure with the top wall moving at a constant speed. Thermally adiabatic conditions are imposed on the top and bottom walls, while the two vertical walls are cold. In the center of the enclosure, a plate has been placed that is non-uniformly heated. A magnetic field is applied with different angles of inclination. Numerical simulations were performed for various influential parameters such as Richardson number (Ri), Hartmann number (Ha), power-law index (n), ferroparticles volume fraction (ϕ), magnetic field angle (γ) to study the flow phenomena in terms of the velocity and temperature distributions as well as streamlines and isotherms, respectively. The present study also investigates entropy generation due to the convective heat transfer flow for industrial purposes. The results reveal that as the Richardson number rises, the average Nusselt number rises, and as the Hartmann number rises, the average Nusselt number reduces. Furthermore, it is found that the average Nusselt number is inversely proportional to the power-law index. Total entropy generation increases with the increase of the power-law index and Richardson number. Entropy due to fluid friction, heat transfer, and total entropy shows a maximum at γ = 90°. Previously, MHD natural convection of the ferrofluid has been studied in a square cavity with a non-uniformly heated plate for the Newtonian fluid using the finite volume method. The aim of the present investigation is to study the MHD mixed convection with non-Newtonian ferrofluid using the GPU-based lattice Boltzmann method, which provides quicker and more robust results.

Funder

North South University

Ministry of Science and Technology, Government of Bangladesh

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3