Effect of trapping and reflection on dust acoustic solitary waves in nonthermal opposite polarity dust plasmas

Author:

Soliman G HORCID,Zahran M AORCID,Elkamash I SORCID

Abstract

Abstract The study of resonant wave-particle interactions (WPIs) is crucial in plasma systems where charged plasma particles interact via long-range electromagnetic waves. Our research focuses on exploring the impact of trapping and reflection, along with the superthermality of Kappa resonance electrons and ions, on the characteristics of dust acoustic waves (DAWs) in opposite polarity dust plasma (OPDP). Both linear and non-linear analyses were conducted. Two distinct types of dust acoustic modes, namely fast and slow, have been observed in the linear regime of two different instances of WPIs. Moving on to the non-linear regime, the Schamel KdV (SKdV) equation has been derived using the reductive perturbation technique. In both cases, a stationary solution in the form of a dust acoustic double-layer wave (DADLW) has been successfully obtained. Our findings are highly relevant to astrophysical plasma environments with non-thermal trapped and reflected particles.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3