More-than-moore steep slope devices for higher frequency switching applications: a designer’s perspective

Author:

Chowdhury JoyORCID,Sarkar AngsumanORCID,Mahapatra Kamalakanta,Das J K

Abstract

Abstract The progress in IC miniaturization dictated by Moore’s Law has taken a leap from mere circuit integration to IoT enabled System-on-Chip (SoC) deployments. Such systems are connoted by contemporary advancements in the semiconductor industry roadmaps namely, ‘More-Moore’ and ‘More-than-Moore’ (MtM). For meaningful integration of digital and non-digital blocks, a power performance tradeoff is essential for maximum and fruitful utilization of the silicon area. Using the techniques under the MtM nomenclature allows the use of unconventional steep slope devices like Tunneling FETs, Negative Capacitance (NC) FETs, Gate-all-around FETs (GAA) and FinFETs etc, which can exhibit reasonable performance with lower supply voltages. Following the Device Technology Co-optimization (DTCO) and System Technology Co-optimization (STCO) the advanced 3D heterogenous integration technologies allow sensors, analog/mixed signal and passive components to be assimilated within the same package as the CMOS blocks. Appropriate device engineering techniques like multi-gate architectures, vertical stacking transistors, compound semiconductors and alternate carrier transport phenomena are required to improve the current drive and scaling performance of advanced CMOS devices. CMOS based codesign is essential to realize new topologies for energy economical computation, sensing and information processing as the beyond CMOS steep slope devices are independently incapable of replacing conventional bulk CMOS devices. This article presents a detailed qualitative review of the various aspects of MtM beyond CMOS steep slope switches and their prospective integration technologies. For system level integration, various aspects of device performance and optimizations, related device-circuit interactions, dielectric technologies at the advance nanometer nodes have been probed into. Additionally, novel circuit topologies, synthesis algorithms and processor level performance evaluation using steep slope switches have been investigated. An exclusive compact overview for contemporary insights into integrated device-system development methodology and its performance evaluation is presented.

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3