Effect of RF-sputtering temperature of ITO electrodes on the resistive switching behaviour of ITO/RbPbI3/Cu devices

Author:

Dehingia Anurag,Ota Subhrakant,Deb Rajesh,Das Ujjal,Roy AsimORCID

Abstract

Abstract In this work, we deposit Indium doped Tin Oxide (ITO) on a glass substrate using the Radio-Frequency Sputtering technique at different temperatures and studied its structural and optical properties. Various structural, optical, and morphological studies are conducted on the ITO substrates. In addition, we have used these ITO films as conducting electrodes in MIM (metal-insulator-metal) type structures for resistive memory application. A resistive switching memory device based on RbPbI3 with sputtered ITO films as the bottom electrode is fabricated and studied for its electrical performance. It has been found that the device showed the write-once-read-many (WORM) nature at a sputtering temperature of 300 °C with a good OFF/ON ratio. The devices with ITO film sputtered a temperature below 300 °C do not show any switching behavior due to lower conductivity and improper surface morphology.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3